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Abstract

A quite general class of Optimal Bounding Ellipsoid (OBE) algorithms including all meth-

ods published to date, can be unified into a single framework called the Unified OBE (UOBE)

algorithm. UOBE is based on generalized weighted recursive least squares in which very broad

classes of "forgetting factors" and data weights may be employed. Different instances of UOBE are

distiguished by their weighting policies and the criteria used to determine their optimal values.

A study of existing OBE algorithms, with a particular interest in the tradeoff between algorithm

performance interpretability and convergence properties, is presented. Results suggest that an

intepretable, converging UOBE algorithm will be found. In this context, a new UOBE technique,

the set membership stochastic approximation (SM-SA) algorithm is introduced. SM-SA possesses

interpretable optimization measures and known conditions under which its estimator will converge.
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1 Introduction

Set-membership-based (SM) system identification algorithms offer an interesting alternative to

conventional techniques. SM methods have been receiving increasing attention internationally as

is evident from the collection of papers in this volume. Recent reviews of this field are found, for

example, in [1]-[3]. This paper is restricted to the class of algorithms known as optimal bounding

ellipsoid (OBE) algorithms which follow from a bounded error constraint.

In this paper we initially formulate a very broad class of OBE algorithms, including all methods

published to date, into a general framework called the Unified OBE (UOBE) algorithm. We then

exploit the UOBE formalism to explore some interesting connections which exist among existing

OBE algorithms. A particular concern will be the pursuit of an OBE algorithm which has both well-

understood convergence properties, and an intuitively meaningful optimization criterion. These two

desirable properties have yet to be combined into a single OBE algorithm.

2 A Unified OBE (UOBE) Algorithm

2.1 The Bounded Error Problem and the UOBE

The bounded error identification problem is as follows: Assume that we are observing some physical

system which is generating sequence {I(-)} E Ck in response to input {u(.)} E C'. {u(-)) is a

realization of an ergodic, wide sense stationary stochastic process. Both input and output sequences

are measurable. We assume the existence of a "true" regression model of the form

y(n) = eO. (n) + e.(n) (1)

in which x(n) is an m-vector of known functions,

Wi[y(n - 1)y(n - 2)..,(n - p), u(n), u(n - 1)..u(n - q)]
2[(n - 1), y(n - 2),...,y(n - p), u(n), u(n - 1),...,u(n - q)]

x(n) =(2)

PM[y(n - 1), y(n - 2),...,y(n - p), u(n), u(n - 1),...,u(n - q)]

and where {e.(.)} E Ck is a realization of a zero-mean, second moment ergodic, complex vector-

valued random sequence whose vector components are independent. The matrix 8. E Cmxk

parameterizes the model. At time n we wish to use the observed data on t E [1,n] to deduce

an estimated model of the same form. The parameter estimate is denoted by e(n) and the residual
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process by e(., 9(n)). The dependence of the residual upon the parameter estimates is highly

significant, so it is shown explicitly.

As the basis for the unified algorithm, we recall the identification algorithm variously known

as weighted recursive least squares (WRLS) (e.g. [6],[7]), weighted sequential least squares (e.g.

[8]), weighted sequential regression (e.g. [9]), and other names. We shall use the name "WRLS"

throughout. The WRLS algorithm is used to sequentially compute the weighted least square error

estimate,
4(n) = argmin 1 Wn,, 11 e(r, F) I FE C" xk (3)

F= n

where, in the most general case, the data weights wn, may be time-varying (dependent upon both

n and r) in a simple way,

WnT aWn-1,7- -r < n - 1()On (r4)1 1n Tfl--

where the sequences {an} and {3,} will be specified below (for the present, they should just be

regarded as sequences of finite numbers). In these terms, the WRLS relations are1

C-'(n) = C 1 (n)/an (5)
C- 1 (n) = C-l(n - 1) - C -1 ( n - I);(n) H(n)C-'(n - 1) (6)

Cr(n 1 + (f3n/an)G(n)

e(n) = e(n - 1) + 3nC-(n)x(n)eH(n,e(n - 1)) (7)

with C(O) = 0 and where G(n) '! XH(n)C-l(n - 1)x(n). From (4) we note that the number

an effectively scales all previous weights at time n to (in conventional applications of WRLS)

decrease the influence of the corresponding data on the estimates. Accordingly, {an} is often called

a sequence of forgetting factors, and in many cases the sequence is taken to be a constant which is

smaller than, but close to, unity. Either {an} or {fn}, or both, may be omitted (set to unity), but

we will have use for both sequences in this work. The matrix C(n), usually called the covariance

matrix2 , is by definition the sum of the weighted outer products,

n

C(n) = W Wn,,X(T)XH(r) = a,,C(n - 1) + Inx(n)xlH(n). (8)

The recursions above theoretically provide an estimate e(n) which is equivalent to the solution of

I For completeness, we also note that the WRLS algorithm can be implemented in a different form using QR-
decamposition (e.g. [9]), and the QR form has been employed with some advantages in some of the SM-based
algorithms to be discussed below (e.g. [10) - [13)). Because our purpose here is to relate many existing developments,
we shall focus on the more conventional approach represented by (6) and (7).

2Though it is more properly a normal matrix [6].
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the normal equations (e.g. [6]),

C(n)9(n) = Caxy(n) (9)

with
nCzyl(n) ' wn,,rt( r) (10)

T=1

It is not widely appreciated that all reported OBE algorithms can be unified into a general

framework which we shall call the Unified OBE (UOBE) algorithm. Particular algorithms are

distinguished by specifying the optimization strategy for determining the sequences of weights

{a} and {0}.

Let us initially present the UOBE framework, then enumerate the particular algorithms. UOBE

algorithms arise from a bounded error constraint:

11 e.(n) 11'< y,( 1

where {y,} is a known positive sequence. At time n, a set of system parameters, say fl(n), can

be found which are consistent with the observations and this sequence of bounds. The exact set is

difficult to describe and track, but, in conjunction with WRLS processing, Q(n) can be shown to

be contained in a superset of the form (e.g. [3] - [5])

(n)= {e tr{[e - e(n)lH C(n) [ -e(n)]} < 1} (12)

where tr{.} denotes the trace of a matrix, 9(n) is the WRLS parameter estimate at time n using

weights {wn.r, r E [1, n]}, C(n) is the weighted covariance matrix, and K(n) is the scalar quantity

n

n(n) 1-" tr{9H(n)C(n)9(n)} + W 11 y(r) 1'] . (13)

Q(n) is a hyperellipsoid in IRZ2m, with its center at 09(n). By examining a single output - say y(-),

the ith component of y(.) - we see that a common "ellipsoid matrix" C(n)/K(n) is shared by each

of the individual outputs, but that each is centered on a different parameter estimate represented

by column i of 49(.). We conclude therefore that under bounded error constraints, a hyperellipsoid

can be associated with a WRLS recursion and conversely.

The weights {wn,r, Tr E [1, n]} directly control the size, orientation, and location of the ellipsoid

in the parameter space at time n. However, because of the structure of the WRLS recursions, in

moving from time n - 1 to n, we are not free to alter the set of weights beyond that which can be

accomplished using the numbers On and 3,. This is evident in the recursions (6) and (7). At most,
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Editors: This figure placed here for reviewers' convenience. Also

included on a separate sheet per instructions.

At time n,

1. In conjunction with the incoming data set (y(n), x(n)), find optimal values of an and/or On,
say an* and/or f3n. Optimality criteria are described in the text;

2. If optimal positive (and sometimes further constrained) values an and/or 3n* do not exist,
then discard the data set (set O = 0 and / or an = 1);

3. Update C(n), 0(n), and x(n) using (6), (7), and a recursion for r(.) described in Lemma 1.

Figure 1: General steps of the UOBE algorithm.

therefore, we have two free parameters with which to control Q(n). All existing UOBE algorithms

differ only in their sequences {an} and {/3n}, and the optimization criterion used to determine

them. The central objective of the general UOBE algorithm is to employ the weights cn and/or

3, in the context of WRLS estimation to sequentially minimize the ellipsoid size in some sense. A

significant benefit is that often no weights exist which can minimize the ellipsoid, indicating that

the incoming data set is uninformative in the SM sense and need not be processed.

All UOBE algorithms adhere to the three general steps displayed in Fig. 1. (For details of

initialization and other nuances of the specific algorithms, the reader is referred to original papers

cited above and below.) Having established the basic framework of UOBE, we next consider the

optimization process.

2.2 Optimization

Within the UOBE framework in Fig. 1, the different algorithms are distinguished by their sequences

{a} and {0,}, in conjunction with the optimization criterion employed in selecting them. Three

optimization criteria have been used. The first two involve set measures on the ellipsoid fl(n)

and are clearly interpretable with minimal explanation, while the third will require some further

elaboration. The criteria are:

Optimization Criterion 1 Minimize the the determinant of the inverse ellipsoid matrix,

p,{S(n)} f det {(n)C-1 (n)} (14)
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(henceforth p.(n) for simplicity);

Optimization Criterion 2 Minimize the trace of the inverse ellipsoid matrix,

't{f(nf)} tr {K.(n)C-l(n)} (15)

(henceforth pt(n).); and,

Optimization Criterion 3 Minimize the parameter (n).

Criteria 1 and 2 were first suggested by Fogel and Huang (41, while criterion 3 was used by Dasgupta

and Huang [14]. In these original papers, single output (real, scalar sequence y(.)) systems were

considered. In the single output case in which 0(n) is clearly intepretable as an hyperellipsoid

ellipsoid in 'Rm , u,(n) is proportional to the square of the volume of the ellipsoid, while pt(n) is

proportional to the sum of squares of its semi-axes. The same two measures are meaningful in the

multiple output case, since they result in the minimization of the volume or trace of the common

ellip,.oid shared by all the outputs (see discussion below (13)). Of course, an important feature of

any optimization criterion is that it be readily intepretable as a desirable objective. The volume

and trace criteria apparently have this property. Accordingly, UOBE algorithms following these

criteria will often be referred to as interpretable algorithms in the following. Criterion 3, however,

has been the subject of some controversy with regard to its meaningfulness and intepretability, as

we discuss later in the paper. This criterion has been used in conjunction with a specific weighting

strategy to achieve a rigorous proof of convergence in a certain sense. The apparent need to trade

interpretability of a UOBE algorithm for proof of convergence will be one of the central themes of

the remaining parts of the paper.

Having established the optimization criteria, let us now focus on the weight sequences. For any

of the criteria above, there is only one quantity to be optimized at time n which in each case is

dependent upon both On and On. However, the numbers an and on are essentially independent of

one another, so that any attempt to optimize one of the criterion measures with respect to both

an, and On results in an infinity of solutions which is resolved by arbitrarily choosing a value of

either weight. Accordingly, we may either tie the weights together through some functional relation,

optimize over only one weight and choose the other according to some predetermined purpose, or

simply eliminate the "unused" weight altogether by setting it to unity (a special case of the second

strategy). We shall adopt the policy of writing the weights an and /3n as functions of a single

parameter to be optimized at time n, say An, so that (in conventionally abusive notation)

an = (An) (16)



/3, -- j3,(A,) (17)

where {an} and {/3n} should now be considered to be sequences of functions whose properties will

be specified later. So that we have sufficient generality for our purposes, it is important to note

that these functions need not depend on An. For example, {an} may be chosen independently of

the optimization in which case, at time n,

ac(An) = an, a constant (function) independent of An. (18)

In this special case, it is true that
19 an(An) = 0. (19)

We shall refer to An as a "weight" at time n, since if an(An) = 1 and 13n(An) = A,, then An is

simply the weight associated with the standard WRLS recursion with no forgetting factor. This

general setup will allow us to embrace all UOBE algorithms in a single theoretical framework.

We now turn to the problem of optimization of the identification at time n according to the

criteria stated above. The following results generalize and unify all optimization procedures found

in the literature.

Theorem 1 Each of the functions in the sequences {an(An)} and {3,,(A,,)} are assumed positive

and are chosen such that, for each n, qn( An) = 3n( An) /an(A, ) is a continuous, one-to-one mapping

qn: (0, an) - (0, 0) (20)

where an > 0. Then, if it exists, a weight An which minimizes

1. the volume measure p,(n) is the unique positive root in An of the equation F(qn(An)) = 0 on
the interval (0, an), where,

Fv(s) = a2s
2 + al -+ ao (21)

with a2 = {(mk- 1)7nG2(n)},
a, = {(2mk - 1)7,,+ II e(n,e(n - 1)) 112 -K(n - 1)G(n)} G(n),
ao = mk [-- 11 e(n, 8(n - 1)) 112] - r(n - 1)G(n);

2. the trace measure pt(n) is the unique positive root in An of the equation Ft(qn(An)) = 0 on
the interval (0, an), where

Ft(s) = b3 s 3 + b2s 2 + b1s + bo (22)

with b3 = y(n)G 2(n)(G(n) - I(n - 1)H(n))
b2 = 3-y(n)G(n)[G(n) - I(n- )H(n)],
b, = H(n)G(n)l(n - 1)K(n - 1) - 2H(n)I(n - 1) [yI(n)- 11 e(n, e(n - 1)) 112]

-G(n) II e(n,4e(n - 1)) 112 +3y(n)G(n),
bo = 1(n)- 11 -(n,e(n - 1)) 112 -H(n)I(n - 1)K(n - 1),
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where H(n) 4 zT(n)C-2(n - 2)z(n), and I(n) "_*_' tr C(n).

Before sketching the proof of this important result, we remark that it is unnecessary to actually

solve for the root of Fv(qn(An)) = 0 or Ft(qn(An)) = 0 to determine whether a positive root exists.

Based on generalizations of previous work [3] - [5], it can be shown that necessary and sufficient tests

for the existence of the positive root are a0 < 0 and b0 < 0 in the volume and trace minimization

cases, respectively. This fact will play an important role in future discussions.

Sketch of Proof: Write the (optimal) normal equations (9) at time n in the form

[an(An)C(n - 1) + /n(AD,)x(n)xH(n)] e(n) = cn(An,)Cxy(n - 1) + I3,(A,)z(n)yH(n). (23)

Now divide through by an(An) to yield

[C(n - 1) + qn(A,\)z(n)XH (n)] e(n) = Cxy(n - 1) + qn(An)x(n)yH(n) (24)

where qn(*) is defined in the theorem. This shows that an identical estimate (and concomitant

optimization problem) results if the covariance matrix is unweighted and the outer product is

weighted by q,(A,). In principle, then, to obtain the desired estimate, e(n), the dependence of

q,(An) upon An is superfluous and we can optimize over, say, pn Lef qn(An), ignoring the dependence

upon An. For this simple case, it has been proven in [3],[5] that

= K(pn)F(pn) (25)

where K(pn) > 0 for all pn > 0, and where F,(pn) is as defined in (21). Moreover, F,(pn) has at

most. one positive root, say pn, which, if it exists, corresponds to a minimum of u,(n) since

=K(p)'Lj+ " F. (p-) = K(p 'a > 0. (26)

Now return to the case in which {p,,} represents a sequence functions of parameter An, {qn(An)}.

It follows immediately from (25) that, at time n,

0fi,, On(7
oil = K(q"(An))F(qn(An)) n(27)

Because of the assumed monotonicity of q,(A,), the only zeros of the derivative occur when

F,(q,,(An)) = 0. Since there is a unique root in p, , viz. pn, and since qn(') is an invertible

function, there is a unique root in An, viz. An = qnv(pn), where qnnV(.) is the inverse mapping of

7



q,,(.).

Similar analysis for the trace case follows from the work in [3] in which a,(A,,) is taken to be

independent of A,,. o

Theorem 1 does not embrace optimization by minimization of x(n). We shall find this criterion

to be problematic from several points of view. In the present situation, the fact that x(n) cannot

be expressed as a function of q,,(An) alone precludes the derivation of a general result like those in

Theorem 1. However, we provide a result which will be useful in future discussions:

Theorem 2 Consider the optimization problem posed above. If it exists, the optimal weight An
which minimizes n(n) is a root of the equation

F,(s) = {(a,(s) + On(s)G(n))2K(n - 1) - 03(s)G(n) e(n,e(n - 1))112} a' (s)

+ {(C,(s) + /,(s)G(n))'y, - a!(s) e(n, e(n - 1)) (12}8)(s).

where an' and 3, indicate derivatives.

This inelegant result will simplify to useful quadratics in two special cases in the paper. It is proved

by taking the total derivative with respect to An of the recursive expression for n(n) found in the

following lemma. This lemma has been proven for the case a,(An) = 1, 3n(An) = An in [5] and for

a,n(An) = an (independent of An), 3,(An) = A,, in [3]. The generalization given here follows from

similar analysis.

Lemma 1 The sequence x(n) can be computed recursively using

n(n) = a,,(An(n - 1) + ,(A -' (A~)~,,(An)11 e(n,e (n- 1)) 112 (29)
an(An) + On(AZ)G(n)

with ao(A;)(O) 1 0.

In conjunction with these general optimization results, we present the following corollary which

asserts some remarkable facts about the quantities upon which the various UOBE algorithms are

based. Once again, we see ro(n) to have exceptional behavior relative to the more interpretable

criteria:

Corollary 1 Consider a UOBE algorithm in which volume or trace is to be minimized. Let qn(An)
be as described in Theorem 1 for each n. Then, the following are independent of the choices of
function sequences {an(A,)} and {/,(A,,)}:

1. the sequence of measures of optimality ({1u(n)} or {pt(n)});

8



2. the data points selected (times for which there exists An > 0);

3. the parameter matrix estimate, e(n).

However, in a UOBE algorithm with r minimization, none of these items is independent of the
sequences {an(An)} and {/3,(,,)}.

Sketch of Proof: Consider first the volume and trace cases. The independence of e(n) follows

from the fact that there is a unique root (if any), p , = q,(An), of either (21) or (22), which does

not depend on functions an or/3,,. Therefore, e(n) is given by (24) regardless f the choices of an

and 3,n. However, consider C(n) for a particular choice of a,(A,) as written in the brackets on the

left side of (23). It follows that

C(n)
= C(n - 1) + q,,(An)x(n)xH(n). (30)

Since the number qn(An) does not depend on the choice of an, the right side is invariant with an.

C(n) must vary with choice of an on the left to maintain the equality. A similar analysis pertains

to the ratio C(n)/3,n(An). Also, from (29)

'K(f) II~ e(n, e(n- 1))1()
an(A) -K (n - 1) + qn(Af),n - qn(A\) 1 + qn(A)G(n) (31)

and a similar argument applies to show that s(n) depends on On. The ratio (n)/M3(An) is formed

to show dependence of K(n) upon On . On the other hand, consider the ellipsoid matrix C(n)/x(n).

Dividing numerator and denominator by a,(An) yields

C(n) C(n)/a,(A ) C(n - 1) + q,(An,)x(n).H(n)

Kt(n) - K(n)/an(An,) = (n (32)

which reveals that C(n)/K(n), and heuce uv(n) and pi(n), depend only on pn* = qn(An) and not on

particular choices of an and /3,,. By similar means, it can be argued that the quantities G(n)K(n- 1)

and H(n)I(n)K(n - 1), and, hence, ao and b0 of Theorem 1, are independent of an and '3n. By

the remarks under Theorem 1, it is therefore seen that the selection of points does not depend on

{ n(1,.,)} nor {/,,(A,,)}.

Now consider the K minimization policy. We provide a counterexample to the claim that the

minimum value of K(n), the estimate e(n), and the selection or rejection of data, are all independent

of the choice of function sequences. At time n, for a given C(n - 1), r(n - 1), and e(n,4(n - 1)),

suppose that 11 e(ne(n - 1)) 112> -Yn - K(n - 1), but 11 e(n,e(n - 1)) 112< y-. We shall show

later in the paper that if a,,(An) = 1 and 3,,(A,,) = A, then A), > 0 does not exist; whereas if

9



a(A,) = 1 - A, and 3,(A,) = An, then 0 < A < 1 may exist 3 . Therefore, under the first choice of

functions, the point will certainly be rejected; whereas with the second, it may be accepted. The

resulting estimate 0(n), and value K(n), can therefore be different under the different choices of

an and 3,. 0

We now turn to the consideration of specific algorithms which have been used in practice. In

addition to showing that these methods are quickly unified under the UOBE framework, one of

the main themes will be to explore the apparent tradeoff between interpretability and convergence

which seems to exist in the currently employed methods. The UOBE paradigm will contribute the

understanding of this relationship.

3 The "Landmark" OBE Algorithms

It is the purpose of this section to enumerate instances of the UOBE algorithm which have been

used in practice. These algorithms have each arisen for a different reason and the unification of

existing methods has not been appreciated nor explored because their original developments seem

somewhat disparate. However, in light of the UOBE framework, it is natural to inquire to what

extent the various algorithms are truly serving distinctly different purposes. This inquiry is the

subject of the next section of the paper.

We shall make no attempt to formally reconstruct original developments. Rather, in this

section we simply distinguish the methods by specification of their sequences {an(An)}, {3,n(A,)},

and optimization criteria. The reader is referred to the original papers for a clearer understanding

of the history and motivations for the different algorithms.

Three principle OBE algorithms have been studied extensively. These are the Fogel-Huang OBE
(F-H/OBE) algorithm [4] (originally called simply "OBE"), the set-membership weighted recursive

least squares (SM- WRLS) algorithm [10],[5], and the Dasgupta-Huang OBE (D-H/OBE) algorithm

[14]. Their differences in terms of the UOBE framework are shown in Table 1. To these three basic

versions, we have added a fourth algorithm which has been developed recently by the authors,

the set-membership stochastic approximation (SM-SA) algorithm [15]. In the ensuing discussion,

SM-SA will be found to be related to its predecessors in some interesting ways. We have also noted

a heretofore unpublished variation on SvI-WRLS, Dual SM- WRLS, which will be found to exhibit

some useful numerical properties.

We should also remark that our focus in this paper is principally upon the identification of

time-invariant systems in which the components of the disturbance vectors e.(n) are independent

'Because of the weighting strategy, A, must be constrained in this case to the interval (0, 1).

10
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Table 1: Specification of Existing UOBE Algorithms

Algorithm a,(A ) 3(A) I Optimization

F-H/OBE 1/K(n - 1) A,*p,(n) or pt(n)

SM-WRLS 1 jv(n) or At(n)
Dual SM-WRLS _ _ _1 u.(n) or pt(n)
D-H/OBE 1 - AK An x(n)
SM-SA A,/(AZ,_ + AZ) A, /(A _-l + An) p,(n) or pt(n)

and each orthogonal sequences. Explicitly adaptive UOBE algorithms have been discussed in [16]

- [19]. A discussion of colored noise issues for a D-H/OBE-like algorithm is found in [20], and for

a more general class of algorithms in [21],[22].

4 Discussion and Comparative Analysis of Existing UOBE Al-

gorithms

4.1 Volume and Trace Minimizing Algorithms

F-H/OBE and SM-WRLS. F-H/OBE represents the first major journal paper on the applica-

tion of ellipsoid algorithms to parametric LP models. The entirely nonintuitive sequences {an(An)}

and {3(An)} used in F-H/OBE are the consequence of the algorithmic approach taken rather than

deliberate choices of the functions (see [4]). In fact, F-H/OBE was developed using a geometric ap-

proach which attempts to optimally bound with a new hyperellipsoid, O(n), the intersection of the

existing ellipsoid, 0(n - 1), and the feasible set implied by the incoming data set. It is interesting

to note that, because the weighting sequence {(an(An)} is equivalent to the sequence {C-'(n)} in

F-H/OBE, the ellipsoid matrix at time n, C(n)/K,(n), is identical to the scaled covaiance matrix

C,,(n) = anC(n) whose inverse is computed directly in the course of the recursion (6).

As an aside, we note that the volume optimization version of F-H/OBE is "suboptimal" in the

sense that it may sometimes result in ellipsoids which are optimal in the prescribed sense, but are

are unnecessarily large according to certain simple arguments. Belforte and Bona have suggested

a remedy in [23] (see also [24]). As pointed out by Walter and Piet-Lahanier [1], the modified pro-

cedure is equivalent to the ellipsoid with parallel cuts algorithm developed by researchers working

11



in linear programming.

Even though Fogel and Huang clearly state in their 1982 paper that there is a LSE problem

underlying F-H/OBE, the geometric approach tends to draw attention away from its presence. The

approach, notwithstanding, however, the similarity of the F-H/OBE equations to "nonadaptive"

WRLS (i.e., without the {a,,} sequence) is striking, and it has not gone unnoticed in the literature

[1],[10],[16]. The paper by Norton and Mo [16] which treats adaptive OBE processing uses the

WRLS framework and implicitly suggests the basis for the UOBE approach taken here. The key to

recognizing the potential for an unlimited variety of UOBE algorithms under the WRLS umbrella,

is the recognition of Fogel and Huang's K(l(n) parameter as an unusual "forgetting factor" a,,.

Until recently, however, this uniformity of ellipsoid algorithms was not fully appreciated. In the

early and mid 1980's, Deller and students (early papers cited, e.g., in [5]) recognized the similarity

of F-H/OBE to RLS, and attempted to associate an ellipsoid directly with WRLS rather than

conversely. The result is SM-WRLS, which is so-named to emphasize the nature of the approach.

While developed very differently, it can be appreciated that F-H/OBE and SM-WRLS are very

similar, the most significant difference being the choice of the "unoptimized" sequence

Indeed, since we know that the parameter estimates and minimization measures will be identical

in the two cases, there is little in the way of theoretical consideration to commend one over the

other. No practical considerations are known which indicate a preference. It is true that modify-

ing the {a(A, 1 )} and {/3,(A,)} sequences used in F-H/OBE will destroy the original geometrical

interpretation of the algorithm. However, it is not clear that this interpretation has any practical

significance. With this disclaimer, we note that the extensions of SM-WRLS discussed below apply

in similar ways to F-H/OBE and other algorithms in this class.

The Dual SM-WRLS algorithm [22] has arisen out of an important practical consideration. It

is apparent from (8) that, if a,, = a,(A,,) tends to be not less than unity, 1#,{ = i3,1(,,)} must be a

generally increasing sequence for incoming data to have any impact on the estimate, particularly as

n becomes large. For SM-WRLS, this fact frequently leads to huge numbers in the computations

and the potential for numerical instabilities. This problem does not occur when the sequence

{fa = a,(A,)} is optimized. In fact, in unpublished simulation studies (with the volume criterion)

we have found the weight sequence to remain nicely bounded. Interestingly, but not unexpectedly

(Corollary 1), if SM-WRLS is run on the same data, first with the 13, weights optimized, then

with the a,, weights optimized, identical data are selected in each case by the set-membership

considerations, and identical estimates result from the two approaches.

F-H/OBE and SM-WRLS have been successfully applied to the identification of simulated and

real systems (e.g. [3],[11],[4],[5]). The recent discovery of the "dual" optimization concept promises
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to add a new meritorious feature to these algorithms, improved numerical stability. The central

benefit of the general classes of algorithms represented by these methods is the meaningfulness of

the optimization process. The main deficiency of these groups of algorithms has been their lack

of well-understood convergence properties. This problem led to the development of the D-H/OBE

algorithm to which we turn below. Before doing so, however, we address the issue of whether

volume and trace algorithms converge. An affirmative answer to this question is most desirable

because it would combine the desired features of interpretability and convergence.

Convergence of Volume and Trace Algorithms. While our immediate discussion is focusing

on existing UOBE algorithms, the work in earlier sections of this paper renders the following

applicable to virtually any algorithm which minimizes volume or trace. We restrict our attention

to the case in which the components of the disturbance vectors e,(n) are independent and each

orthogonal sequences. A discussion of colored noise issues is found in [21],[22].

One of the alluring aspects of having interpreted the general UOBE algorithm as a WRLS

algorithm with a bounded error "overlay" is that the convergence properties of the estimate resulting

from the basic RLS algorithm (an(An) = d,(A,) = 1 for all n) are well-known. In the RLS case,

if the sequence {e.(.)} is wide-sense stationary, second moment ergodic almost surely (a.s.), white

noise, then the RLS estimator 1(.) will converge asymptotically to 9. a.s. (e.g. [6],[81). However,

this well-known convergence result falls far short of a convergence proof for the UOBE algorithms

under consideration which use vastly different data weighting strategies. A simple inclusion of the

sequence {an(An) = a} with 0 < a < 1 (with {f3,(A,) = 1}), for example, has been shown to lead

to inconsistent asymptotic estimates [25]. Likewise, we may even assert a.s. convergence of the

RLS estimate, albeit to a bias, when {e.(.)} is colored and persistently exciting [26]. Again, while

this result does not provide proof of estimator convergence for the present UOBE cases, the UOBE

estimate has been found to practically converge, expectedly to a bias [21].

More generally, it would be interesting to have a precise understanding of the asymptotic be-

havior of the hyperellipsoidal feasible set, especially in the case of colored noise. Unfortunately,

convergence proofs for the volume and trace minimization algorithms are not known. The original

OBE paper by Fogel and Huang [41 is sometimes misunderstood to indicate the convergence of the

bounding ellipsoid to a point under ordinary conditions on {e.(.)}. In fact, the F-H paper only

proves this convergence for ordinary RLS so that the fundamental optimization process is not taken

into account.

Whereas no known convergence proof for either the estimator or the feasible set exists for

any volume or trace algorithm, a recent result indicates some theoretical support for the favorable
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convergence behavior of these methoas which is observed in practice. The following has been proven

for a specific UOBE class (o (A) sequence chosen arbitrarily,/3,(A) = An optimized) in [21]. By

arguments in this paper, the more general result follows:

Theorem 3 For any UOBE algorithm in which p, is minimized, if there exists A, > 0, then there
also -xists a large neighborhood of weights around A,, say KV. (including, e.g., all An such that

0 < An < ,), such that if An E .AfA is used, p.(n) < A,(n - 1).

Though it has not been formally proven, it is likely that a similar result pertains to trace algorithms

as well.

Theorem 3 indicates that the ellipsoid volume will tend to some unspecified size in some un-

specified manner. If we consider the ratio

,(n) Lji y(n) (33),u(n - 1)

(where jL(n) means either p(n) or ut(n)), for example, the rate at which L(n) approaches unity

will determine the convergence behavior of the ellipsoid. Suppose, for example, that

1 n2 - 1 (4(n ) T2 =(34)

In this case

lim u(n) = p(l) lim n T -(1)$0 (35)
n-oo nv -r

On the other hand, if

v(n) - 1 - n (36)
n n

then,

lim u(n) = (1) im -1 (1) lim 0. (37)
- n-00 " n-oo n

This result has not been clearly understood, and its finding offers some hope that a proof of

convergence (in some sense) for the volume and trace algorithms may be found in the white noise

case.

It has frequently been noted that the hyperellipsoidal bounding sets resulting from UOBE

algorithms can be quite "loose" supersets of the exact feasibility sets (polytopes) (e.g. [27J,[281),

particularly in "finite" time4 . However, many simulation studies in the literature (white noise case)

have shown the volume of the ellipsoids to become quite small in the "long term." Further, as

4Norton has proposed the use of inner bounds as a possible remedy for this problem [28],[29]
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we and other researchers have demonstrated, the empirical convergence and tracking properties

of the UOBE estimator are favorable in spite of the few data used. This is an indication that

the presence of the ellipsoid and the optimization procedure centered on it, are quite useful for

parameter identification, regardless of our present inability to completely understand its behavior

in theory. Theorem 3 offers further support for "good behavior" of this class of algorithms.

SM-SA. The SM-SA algorithm provides an interesting "bridge" between the present discussion

and that of D-H/OBE to follow. SM-SA represents the authors' pursuit of a converging, inter-

pretable UOBE algorithm. The algorithm is so-named because it is equivalent in form to the

so-called stochastic approximation (SA) algorithm (e.g. [30]) as we discuss below. Our work has

shown that a feature which tends to promote convergence of the ellipsoid is the prevention of

"drifting" of the covariance matrix toward infinity. In an unweighted RLS algorithm, this problem

is eliminated by normalizing the covariance matrix to the time n, that is, by replacing C(n) by

(1/n)C(n). In principle, if the sequence {z(.)} represents a stationary stochastic process with

appropriate ergodicity properties, then (1/n)C(n) will tend to C {z(n)xH(n)}. Clearly, however,

this strategy may not work for weights determined by SM considerations as C(n) may grow much

faster than n. In the SM-SA approach, SM-WRLS with either volume or trace minimization is

modified so that covariance matrix is normalized to the sum of the weights, say An' do En I A-.

Accordingly,

C(n) = An 1  -1)+ (38)A-- -n An)+ z-=Hn.(s
Ann

Since A = A _1  + A ,, w e find that

a(A,) = 1 (39)
A*._1 + An

,, - AI +An (40)

While the ellipsoid associated with the SM-SA algorithm has not been proven to converge, the

method is, of course, subject to the volume (and trace) contraction rule specified by Theorem 3.

However, unlike the F-H/OBE and SM-WRLS algorithms, conditions under which the estimator,

9(n), converges to o. can be clearly stated in this case5 .

Theorem 4 Sufficient conditions for convergence of the SM-SA estimator in the sense

lim 9(n) + 9. (41)

5 We shall find that these conditions also apply to D-H/OBE.
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are

i3,(A.*) > 0000

ZI (A0) 0 (42)

00

ET1 (x;) < 00. (43)

Sketch of Proof: The function sequences {a,(An)} and {3,,(A,,)} can be replaced by the following,
and the optimization done over A,,, without affecting the optimization:

= 1-- (44)

( = (45)

This follows immediately from the fact that the ratios qn(A,) = i, (A,)/c,(A ) and qn(A,) =

i(A,)/a,,(A ,) must be equal (to, say, p*) according to Theorem 1, from which =,(A ) =,3(A)

p/(l + p.) and c,(A ) = &n(A,) = 1/(1 + p ,). The WRLS algorithm with the weighting strategy

given by (44) and (45), is frequently referred to as the SA algorithm for identifying linear parametric

models. The work of Robbins and Monroe [31] and Blum [32] on the SA algorithm results in the

sufficient conditions of the theorem. 0

Let us henceforth adopt the simpler weighting strategy (44) and (45) for SM-SA. Remarkably,

the weighting strategy that emerges here is identical to the Dasgupta-Huang weighting, resulting in

the same convex combination of past covariance matrix and incoming outer product. However, this

weighting strategy arises in a very different context in which the objective is to minimize the volume

or trace of the hyperellipsoid at each step - if such can still be accomplished. Indeed, there is an

ellipsoid associated with D-H OBE at each step, but the "usual" measures of its size are ignored in

the optimization process - sacrificing interpretability. On the other hand, SM-SA does not inherent

the convergence properties of D-H/OBE (described below). Unlike previous intepretable UOBE

algorithms, however, SM-SA does have known conditions for estimator convergence. Further, SM-

SA also exhibits the desirable property of "covariance boundedness" which we conjecture will be

required for a volume or trace algorithm to converge in the set theoretic sense of D-H/OBE.

4.2 D-H/OBE and the Issue of K Minimization

In the work above, we have discussed the fact that volume and trace UOBE algorithms are in-

tepretable with respect to their principles of operation, but lacking in well understood convergence

properties. Some significant progress on the convergence issue is cited, and it seems likely that
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the elusive convergence proof for at least some classes of volume and trace algorithms will be dis-

covered. In this section, we briefly examine the problem from the "other direction." Given the

D-H/OBE algorithm with its desirable convergence proof, can it be shown that this algorithm is

actually performing according to "interpretable" principles?

Of the fundamental variations on UOBE, D-H/OBE is the most recent to be published. The

technique is unlike all other existing methods in the use of r minimization. This minimization

approach, in conjunction with weighting strategy (44) and (45), provides the means with which

to prove asymptotic and exponential convergence of the ellipsoid, and cessation of updating, using

Lyaponov theory. From an analytical point of view, the reason for the choice of the x optimization

criterion is that K(n) is a bound on the Lyapunov function used in the minimization at time n,

and the convergence of the Lyapunov function is used to prove convergence of the algorithm. Upon

convergence, the residuals, e(., e(.)) are guaranteed to remain in the "dead zone" indicated by the

error bounds, i.e., as r - oo, 1 e(r, e(r - 1)) 112< -

From an interpretive point of view, however, diminishing (n) is not clearly helpful because

its magnitude is not clearly related to the "size" of the set Q(n). Dasgupta and Huang [14] argue

simply that n(n) is "a bound on the estimation error," and should be minimized. Norton and Mo

[161 dispute this claim writing "[K(n)] is not a bound on the parameter error, nor does it bear a

simple relation tn it."

In this section, we wish to determine whether D-H/OBE is, in fact, performing according to

some interpretable principles. To begin, let us use Theorem 2 in conjunction with (44) and (45) to

write a quadratic for the optimal root at time n for D-H/OBE,

f-H(S) = 2 [7n(G(n) - 1)2 - K(n - 1)(G(n) - 1)2+ e(n,e(n - 1)) 112 (G(n) - 1)] (46)

+2s [(-fn - K(n - 1))(G(n) - 1)+ 11e(n, 8(n - 1)) 1121 + [y,, - r.(f - l)- 11e(n, e(n - 1)) 1121

For future reference, let us also write a similar expression for UOBE with /3n(An) = A,, and a,(An) =

1. This latter case is similar to the SM-WRLS setup, except that K minimization is used. For this

reason we write "FSM-WRLS$)":

FSM-WRLS (s) = 7,,G2(n)s 2 + 2-YnG(n)s + (On- II e(n, 8(n - 1)) II). (47)

The reasons for including (47) will become apparent momentarily. Dasgupta and Huang [14] show
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that an optimal weight in the sense of minimizing K(n) exists iff6

11 e(n,e(n - 1)) 112 > _-Y - K(n - 1). (48)

Accordingly, this simple and computationally inexpensive (O(m)) test may be employed to de-

termine whether the the current data set (y(n), x(n)) is useful in the sense of minimizing K(n).

Interestingly, the test (48) is tantamount to testing the zero order coefficient of quadratic F D- H

for negativity. This is reminiscent of a similar test which can be performed for any volume or trace

algorithm (see remarks below Theorem 1). However, that checking of the zero order coefficient

FD - H should be a sufficient test for an optimal weight is not apparent as it is in the volume or

trace cases. In particular, this is because the second order coefficient of FD -.. need not be positive.

Consequently, Dasgupta and Huang go to some effort to verify (48) as a test, and a set of rules

centered on the second order coefficient is presented for finding the optimal weight if the test is

met 7. Let us juxtapose this fact with the following:

Theorein 5 1. Consider the SM-WRLS algorithm. If K(n) is to be minimized at time n, a
necessary and sufficient test for the existence of an optimal (K-minimizing) weight, say An,,, ,

is that the zero order coefficient of (47) be negative:

II e(n,9(n - 1))112> 7n. (49)

2. Again consider SM-WRLS. Test (49) is also a sufficient condition for the existence of an
optimal volume (A ,) or trace (An,t) weight.

3. Item 2 is true for any volume or trace minimizing UOBE algorithm.

Sketch of Proof: Item 1 is proven in [3],[17]. (One key feature of F.SM - WRLS which facilitates

this result is that its second order coefficient is always positive. This is not true of FF-r.) Item 3

follows the fact that, if (49) holds, then a0 of F,, and b0 of Ft (see Theorem 1) are both negative.

Now see the remarks under Theorem 1. Item 2 is a special case of 3. 0

The point of including Theorem 5 is to illustrate one case (SM-WRLS) in which K minimization

has many implications for intepretable performance. Indeed, (49) is a very powerful test. It is

an indicator that not only (n), but also either of the other two (interpretable) measures can be

minimized at time n for SM-WRLS. Further note that, due to Theorem 3, K minimization implies

eTheir work is carried out for the one-dimensional case.
7 Actually, a simpler rule is available. Because of the weighting strategy, A,. must be in the interval (0, 1). A

little thought will indicate that, once (48) is met, FF-H(s) = 0 can only have a root on (0, 1) if F4-H(1) > 0. If
this is the case, then the quadratic equation can be used to find the root. Otherwise An*, is taken to be zero or some

predetermined number on (0, 1), depending on the relative magnitudes of FP-H(O) and FF-H(1)
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likely volume decrease (though not optimally) as well. Coincidently, (49) can also be (suboptimally,

since it is only a sufficient condition) used to test whether volume or trace can be minimized at time

n for any UOBE algorithm". We must not lose site of the very important fact that convergence has

only been proven for the D-H/OBE, and none of these findings does anything to change that fact.

Obviously, the next step is to inquire whether the D-H test (48) has similar implications for

interpretable measures. Unfortunately, the answer appears to be no. Whereas (49) is equivalent to

testing whether ao + K,, < 0 or bo + Kt < 0 with both K,, and Kt positive, (48) is only equivalent

to testing whether ao + ,' < 0 or bo + Rt < 0, where neither k,, nor kt is necessarily positive.

Unfortunately, the truth of (48) is therefore not sufficient to assure that ao and b0 are negative. If

it were additionally known that

G(n) > ink, (50)

then (48) would be a sufficient condition for the existence of A,, and A,,t in the D-H case, and an

indicator that any weight, even A,, , would likely diminish the volume. Because of the weighting

strategy used in D-H/OBE, however, (50) does not hold in general. While some heuristic arguments

can be made indicating circumstances under which (50) might be true, support for the notion that

the D-H test might be similar to a volume or trace test is very weak in these terms.

So, in the analysis above at least, the D-H test comes intriguingly close to being a check for the

existence of Az,, or A,,, (hence for an indicator that D-H/OBE is minimizing both ic and volume),

but falls somewhat short. Again, we have not been able to find that convergence and intepretability

exist in a single UOBE algorithm. However, the connections that apparently exist between D-

H/OBE and more interpretable algorithms offer some hope that a meaningful interpretation of the

dynamics of D-H/OBE might ultimately be found.

5 Summary and Conclusions

We have shown that all existing OBE, and, in fact, a very broad class of OBE algorithms, can

be unified into a single framework which we have called the UOBE algorithm. This framework is

based on generalized WRLS in which very wide classes of "forgetting factors" and data weights

may be employed. Different instances of UOBE are distiguished by their weighting policies and the

criteria used to determine their optimal values.

With the UOBE as a framework for discussion, we then turned our attention to existing algo-

rithms. The main advantage of those which minimize ellipsoid volume and trace is the ease with

which the performance principles are interpreted. However, to date no volume or trace algorithm

8This idea has been employed in [17]-(19] as an efficient way to implement the testing for real-time applications.
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has been formally shown to converge in set-theoretic terms. We have however, introduced a new

algorithm, SM-SA, for which conditions may be stated for convergence of the estimator. Several

results are presented which offer promise that a proof of set convergence for volume and trace

algorithms will ultimately be found.

Interestingly, SM-SA uses an equivalent weighting strategy to D-H/OBE, the only published

UOBE algorithm for which set convergence and cessation of updating has been proven. D-H/OBE,

however, uses ic minimization which does not lend itself well to interpretation of algorithm perfor-

mance. An inquiry into the interpretability of D-H/OBE yielded some interesting connections of

this method to volume and trace algorithms, but fell short of showing that D-H/OBE in fact mini-

mizes something meaningful at each step. It was discovered that n minimization can imply volume

or trace minimization, but this was not demonstrated for any converging (ellipsoid) algorithm.

Hence the pursuit of an interpretable, set converging UOBE algorithm remains an open issue.

The UOBE framework developed in this paper should be an asset in the discovery of this desirable

algorithm.
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Figure and Table List

Fig. 1: General steps of the UOBE algorithm.

Table 1: Specification of existing UOBE algorithms.
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At time n,

1. In conjunction with the incoming data set (y(n), x(n)), find optimal values of an and/or /n,
say an and/or 3n,. Optimality criteria are described in the text;

2. If optimal positive (and sometimes further constrained) values a* and/or 13n do not exist,
then discard the data set (set 0,* = 0 and / or a , = 1);

3. Update C(n), 4(n), and x(n) using (6), (7), and a recursion for K(.) described in Lemma 1.

Figure 1: General steps of the UOBE algorithm.

Table 1: Specification of Existing UOBE Algorithms

Algorithm an(A ) [ 3n(An,) Optimization
F-H/OBE I/K(n - 1) An/17, yi(n) or it(n)
SM-WRLS 1 *n p,,(n) or pt(n)
Dual SM-WRLS A 1 1,,(n) or l't(n)
D-H/OBE 1 - AK A (n)
SM-SA AZ_ 1/(A- 1 + AZ) A n/(AT,_t + A,) y(n) or pt(n)
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ABSTRACT

The cross-covariance matrix of two stable autoregressive (AR) sequences is considered. A mildly weaker

condition is identified which ens-res the nonsingularity of this matrix. As one consequence of this result, a

weaker sufficient condition is obtained which would guarantee the "' ality of the mean-square output error
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i. INTRODUCTION

The two most popular approaches to filtering, identification, prediction, estimation, etc., are the equation

erroi method and the output error method. The algorithms which are based on these two methods are often

designed to minimize the mean square error. Specifically, they minimize the mean square equation error

(MSEE) or the mean square output error (MSOE). The asymptotic analysis of these algorithms involves: 1)

finding the attracting solution(s), and 2) investigating the local or global convergence to the solution(s).

Goodwin and Sin [1], and Ljung and Soderstrom [21 have treated the equation error based algorithms

thoroughly from the perspective of convergence and applications. An attractive feature of the equation error is

its unique minimum MSEE solution regardless of the linear model and the properties of the input. 3 However,

this property is not shared with the output error method in general when the model is an infinite impulse

response (IIR) filter. But, there are sufficient conditions which guarantee the uniqueness of the minimum MSOE

solution in the identification setting [3], where the model (adaptive filter) can characterize the plant (unknown)

completely.

The goal of this paper is to present a weaker sufficient condition than what was presented in [3] when the

input is white noise and the model order exactly matches the order of the plant. This is ultimately intended to

take us a step closer to establishing the necessary and sufficient conditions for the unimodality of the MSOE sur-

face. In this paper, first a cross-correlation matrix is introduced in section II where some of its properties are

outlined. In section III, these properties are used to extract the weaker sufficient condition for the uniqueness of

the hIR identifier which would minimize the MSOE.

II. A CROSS-CORRELATION MATRIX

Consider the m xm matrix P defined by

P(A ,C,.,m ) = E[ ,,(n ),,(n )]1

where

The input is assumed to be persistently exciting.



2

.4 (q-1)) C (q-1)x(n

A A

x (n -m + x (n -m +1)a(q- ) .(q-)

Here, it is assumed that A (q - 1) and C(q - 1) are both N th order stable polynomials of the form

N N
A(q - 1) = I + Xaj q-' a f (1-piq - ')

= 1 i =( 2 )

N N (2)
C(q -1) = 1 + "c q-' [-II (1-riq - 1)

i=l i=1

withlp, j< 1 and Ir, 1<1, fori = 1, ,N.

Ljung and Soderstrom [2] encountered the matrix P during the convergence analysis of the nonsymmetric

instrumental variable method (IVM). They argued that P is singular only on a measure zero set which is deter-

mined by det (P)--0. As a result, it was concluded that the nonsymmetric IVM converges almost everywhere and

that P is generically nonsingular. They also provided the sufficient condition for nonsingularity of P in [2,

Lemma 4.7]. But, since we are only interested in the case where x(n) is white, let us restate this Lemma.

Lemma 1: 121

Assume that x (n ) is a white sequence. Then, the matrix P is nonsingular if either

(i) A is strictly positive real,C(q - 1)

or
(ii) m > N

The positive realness in (i) is such a strong condition that it also guarantees P to be positive definite. An

obvious special case is when C(q - 1) = A (q-1). The sufficient condition stated in (ii) is much less restrictive

than (i) which we will further explore next. In particular, it is of considerable interest to know how tight this

sufficient condition is. That is, can m > N-I, or m > N-2, etc., replace (ii)? If so, a weaker sufficient condi-

tion has been identified.

The Toeplitz matrix P for which no symmetry assumption is assumed is fully determined by

rk -m k < m-!, where
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gij(A,C)A Pij(A,Cr,m) i,j = 1,2, m

(3)
1 1 j(z zN-)+i- dz

21rj tl=' z'VA(z -i) C(z)

or, equivalently,

P(A,C,x.m)T = J P(A,Cx,m) J
(4)

= P(C,A,x,m)

where D. (z) is the spectral density of x (n) and

0 1

J1=

1 0

The following Lemma presents an identity involving the NxN matrix P. In the sequel, Pm will be occasionally

used to denote P(A ,Cax ,m) for brevity.

Lemma 2:

If x (n ) is a zero-mean white noise sequence with variance a2, then

P > _a PN " - 1= ](5)
IOT I OT 0i 0

where a=[a ai "'" aN IT, c=[ct c, ... cN IT Also, 0 is the N-I zero vector, and 0 and I are the
N - I x N - I zero and identity matrices, respectively.

proof See the Appcndi3. C0

One immediate consequence of this result is stated below in Lemma 3 and Theorem 1 which establish the non-

singularity of Pv-I by identifying a direct relationship between det (PN) and det (PN-I).

Lemma 3:

Let us define

A, = detIP(A.C x,m)j

Then, we have

fi) AN- 
N

H- (1 - p, r)
'. = I
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(6)
A -1 (1 - L2NCN) O2Nl

(ii) AN-I - - (1 -aNcN) AN = N

a H (l-pr)

.J =
1

proo. See the Appendix. 0

Theorem I:

The matrix P is nonsingular for m > N-I.

Proof

Since laN I<1 and CN 1<1 for the stable polynomials A (z- ) and C(z-1), according to Lemma 3(ii) AN- 1

would be nonzero. Since P is nonsingular for mn > N according to Lemma 1, part (ii), the result immediately

follows. 0,

Theorem 1 presents a weaker sufficient condition for nonsingularity of P namely, m _ N-I. But, is this

the weakest sufficient condition? To answer this question, consider the following example.

Example h:

Let N = 3 and m = which signifes the case m = N-2. Then, P is a scalar which is given by

P~n(,C=(l-a wc3)2 - (a Ic 3-c 2)(c 1 a 3-a 2 )

1-1 (i-p r,)

However, if c 1=-2.4, c 2=1.91, c 3=-0.504, a =a 2=0, and a3=0.2854 , which correspond to two stable polynomi-

als A(q) and C(q-r), result in P=0. 0t

Similar examples can be found for the case where m <N-2. Therefore, it is concluded that m > N-i

represents the weakest sufficient condition.

One significant implication of the above result is presented next where the connection between P and the

stationary points of MSOE is established and then a weaker condition for the uniqueness is stated.
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I1. STATIONARY POINTS OF MSOE

Consider the system identification model where it is assumed that

v(n) = 1 x(n)+v(n) (7)
C(q-)

where

n d  tl
c

D(q -1 ) = i q-' C(q - ') = 1 + Xci q-'
1=0 i=1

are coprime polynomials in q-1 and v(n) is additive noise. We further assume that the zeros of C(z - 1 ) are

inside the unit circle and that the additive noise v (n) is a zero mean stochastic process which is independent of

x (n). Let the adaptive system be an IIR filter whose input-output relation is governed by

A '(n) = B x(n), (8)" A (q-1)

where

B(q - 1) = X bi q- , A(q - 1) = I + jai q-'
1=0

If we define the output error by e(n) = y(n)-f (n), the MSOE is given by

2  E D(q- 1 ) B(q-) n2

teC(q=) - A(qi)J j +E[v 2(n)'(

The stationary points of (9) are the solutions ofEqL, q II ,
E------v-Bq-'Ix(n). B 2(q-1) x (n-0] =0, (10)LC c(q-') A ( -) A2(q - 1)  .

E f[[D )q-b A(q-') x(n)- x(n-j =0, (11)EL D(q 1  A B(q') 1 (q1

li <n0, , 05j <nb

It is shown in [3] that (10) and (11) accept a unique minimally realizable solution if for white input x(n)

n= min (n,-n. , nb-nd) 0 (12)

nb + I -n, 2!>0 (13)
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The expression (12) merely states that the adaptive filter should be of sufficient order. Here, we consider the

case where na=nc and nb=nd which is referred to as exactly matching (EM) adaptive IIR filter. Violating (13)

may lead to the existence of local minima on MSOE surface as shown in [6], [7]. Weakening (13) may natur-

ally seem to be in contradiction with this result. However, the case considered in [6] and [71 is for nb = 0,

n, = 3 and, therefore, nb + 1 - n, = -2. Here, we show that nb + 1 - n, = -1, for EM case, is the underlying

weakest sufficient condition for uniqueness of the global minimum.

Degenerated Solutions: The existence of stable degenerated solutions is a sufficient condition for the existence

of local minima [5,6,71. For the EM case, the degenerated solutions corresponding to nb + 2 = n, are found by

setting B(q-') - 0 in (10) and (11). As a result, (10) vanishes and (11) is reduced to

do

P(A,C,x,nb+l) =0 (14)

db

Corollary 2:
For a given stable system (7) with white input, no stable polynomial A (q- 1 ) satisfies (14), and hence no

degenerated solution exists.

Proof

If such a stable solution exists, say A* , then do ..... d,,b can be solved for. The matrix P has to be

singular at A* since not all d, are zero. But, according to Theorem 1, P(A,Cx,nb+l) is nonsingular for any

stable A and C since nb+l = nc-I =n-l. 0

Other Solutions: For the EM case, all the stationary, nondegenerated points of MSOE corresponding to

nh +2 = n,. which solve (10) and (11) fulfill (see 15])

P(AA,CAx,na+nb-nL+) =0 (15)

nL

where for L(q - 1) = I + lq' (, nL->)
i=1
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in which A(q-') and f(q-1) are coprime. Also, hi are such that

P'. +11b "€RL

I hi q-' = A(q-')D(q-) - B(q-')C(q -1 ) (16)

Theorem 2:

Consider an exactly matching adaptive IR filter in which nb + 2 >- nc. The MSOE surface of this filter is

unimodal, with a unique global minimum, when the input is white.

Proof.

We note that

N = deg(AA) = deg(CA) = 2na-nL , m = na+nb-nL+l

and since

N-m = na,-nb-

= n,-rb- 1 < 
I

then. Theorem I implies the nonsingularity of P(AA ,CA ,x,na+nb-nL+l) for any value of nL Therefore, (15)

yields

hi= 0 , i= 0 ..... n+nb-nL (17)

Using (17) in equation (16) reveals that

X(q
-1 ) C(q

- )

Since C(q -') and D(q -') are coprime polynomials, (19) implies that

A(q-') = C(q-') , B(q-) = D(q-')

But this can happen only when nL = 0. Therefore, there exists a unique stationary point which is a unique glo-

hal minimum of MSOE and is givven by

A(q-') = C(q - ') , B(q -' ) = D(q - ') (19)

This is a weaker sufficient condition than (13) for the EM filters. C3
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Eample 2.

Consider the case where rib = nd- 0 and n = n= 2 which was considered by Steams [9]. The MSOE

surfaces of filters in this class were observed to be unimodal by examining different pole locations of the unk-

nown system. Theorem 2 provides a proof in support of this observation. 0

IV. CONCLUSION

A nonsymmetric Toeplitz matrix was introduced and a weaker sufficient condition for its invertibility was

presented. This obtained weaker condition was used to conclude that if the adaptive IIR filter is exactly match-

ing, the MSOE surface is unimodal if (rib +2 ) - n, > 0. This is a weaker sufficient condition than what is

reported in the literature [3]. In fact, this can be regarded as the weakest sufficient condition in general.
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APPENDIX
Proof of Lemma 2:
First, note that

aT *N(n) = x(n+l)- x (n+1l), x(n+l) (Al)

Then,

aTPNC = E (n+l) x(n+l) [(n+l)- x (fl)[x A (q-1) I rJJq1

= E[x 2 (f+l)]+E x(n+l) .t(n+l 1) - E~xn+1) xln+1) 1-E~xl+l xn+l1 (A2)[A (q ') C(q- 1 ) A (q-') j C(q- 1 ) j

= 2 = go-O

since x (n) is white. Also.

-aP I aE[*N(n 1IV (01]

x(n+1) 1_
=-E L A(ql) - VNIlJ(n  (A3)

Similarly,

[ T 9 (A4

gI-N

Finally, straightforward calculations suggest that

PT =E[0N1(n)4N1(n)]

V PN-1

Therefore.
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g -- o g gN------- -;

* L 1I (A6)-a I _  PN -c (A6)

0T I OTI PN-1

g I-N I

where the right side of the equality in (A6) follows immediately using (A2), (A3), (A4), and (A5). But
this an alternative representation of (5) and the proof is complete. 0]

Proof of Lemma 3:

(i) First, let p, 's be distinct. Now let

k= Residue of AA(Z
- ) C(z) at =

2 
W= (A7)

N
C (p) I-I (pi - pj)

j=l

Then, Equation (3) is reduced to
N

g XI Y, Pk'-'-, kk p (AS)
k=l

For the special case when m = N, using (A8) in (I) gives

P(A,C,x,N) = V1 A V, (A9)

where

N-I N-I . . . N-1

P 1 P2 14'

V,=

PI P2 PN

and
'1 P , . . . p I-

1 P2 P2
-

VI =

PN p

and

A=Diag[XI ) 2 . . . . . . N

Therefore, since the involved matrices in (A9) are N xN, it follows that
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AN = det(V 1 ) det(V2 ) det(A)
N N N

= l- (Pi -P j) [1 (Pi - Pj) 1 ki
J=1  

j=1 i=1
j<J>i (A10)

-2 o2N

N N

H- Cp,) [I (1 -pir,)
1=1 i, = 1

This result was derived under the assumption that pi 's are distinct. But, since the determinant is a con-
tinuous (actually analytic) function of the elements of a matrix, and since each element of the matrix P
is analytic for stable polynomials A ( -1) and C( - 1) (see [2]) then A,, is analytic and therefore continu-
ous. It then follows that if A (z- 1) has multiple poles, AN is given by (A10).

(ii) Lemma 2 implies that

I I[a21 OT

det -a _ _ PNc - ] = det PN (All)
OT 0r T0 0 0

The determinants of the Companion form matrices in the left side of (All) are equal to (-l- 1 aN and
(-l) N-cN, respectively. As a result, (All) can be written as

go-0 g2 gN-1

g- 1  go

aN CN AN =

gl-N g- 1 go (AI2)

= AN - 0F2 
AN_1

where the last equality follows by evaluating the determinant with respect to the first row or the first
column. Therefore,

AN-1 =  0 ( - aNCN) AN ( 3=nd he pro(A13)

and the proof is complete. []
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ABSTRACT

LAYER-WISE TRAINING OF FEEDFORWARD

NEURAL NETWORKS BASED ON LINEARIZATION

AND SELECTIVE DATA PROCESSING

By

Shawn David Hunt

A class of algorithms is presented for training nonlinear feedforward neural net-

works using purely "linear" techniques. The algorithms are based upon linearizations

of the network using error surface analysis, followed by a contemporary recursive

least squares identification procedure which can be implemented using parallel pro-

cessing. Specific algorithms are presented to estimate weights node-wise, layer-wise,

and for estimating the entire set of network weights simultaneously. A procedure

for modifying the algorithms to selectively use the training data and increase speed

is also presented. A computationally inexpensive measure is developed with which

to assess the effect of a particular training pattern on the weight estimates prior to

its inclusion in any iteration. Data which do not significantly change the weights

are not used in that iteration, obviating the computational expense of updating.

Several experimental studies are presented showing the advantages of this class of

algorithms. Specifically, the layer-wise algorithm is shown to be vastly superior to

back-propagation in terms of the number of convergences and convergence rate. Ad-

ditionally this algorithm is shown to be insensitive to the choice of initial weights and

forgetting factor, eliminating two of the greatest problems in the implementation of

existing training algorithms.
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ABSTRACT

NUMERICAL STABILITY AND CONVERGENCE

ISSUES IN THE SM-WRLS ALGORITHM

By

Marwan Mahdi Kranz

This research is concerned with a particular class of optimal bounding ellipsoid

(OBE) algorithms which implements an ow timization criterion based on the volume

of the optimal ellipsoid. The OBE algorithms belong to set membership (SM!) identi-

fication techniques and are used to identify the parameters of linear system or signal

models based on a priori information about the pointwise 'energy bounds" on the

error sequence. OBE algorithms define a set of solutions that takes the form of a "hy-

perellipsoid" in the parameter space. This ellipsoid is centered around the familiar

WRLS estimate.

In this work, the convergence behavior of the ellipsoid for the class of OBE al-

gorithms that utilizes the volume ratio measure is studied under different types of

disturbances. The non-persistency in the excitation of the disturbances may result

in the degeneration of the ellipsoid. The convergence of the ellipsoid under both

persistently and non-persistently exciting colored noise is particularly investigated.

The conventional OBE algorithms with volume ratio measure employ a data selec-

tion strategy which is based on minimizing the volume of the ellipsoid and finding an

optimal error minimization weight to be associated with the present datum. In this

work, a new OBE algorithm, the set membership past weight optimization (SM-PWO),

is developed. The data selection technique in this algorithm is based on minimizing


